Chlorine

Product Outreach Information

Disclaimer

This presentation and the information contained herein are offered solely for your consideration, investigation, and verification. NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY OR OTHERWISE, ARE MADE OR CONTAINED HEREIN. Olin's exclusive responsibility for any claims, including claims based on negligence, arising in connection with the information contained herein or the subsequent purchase, use, storage or handling of the product will in no event exceed Olin's sales price for the product with respect to which damages are claimed. In no event will Olin be liable for any incidental or consequential damages arising in connection with the information contained herein or the subsequent purchase, use, storage or handling of the product. User accepts full responsibility for compliance with all applicable federal, state and local laws and regulations. Nothing contained herein will be construed to constitute permission or a recommendation to use the product in any process or formulation covered by a patent application owned by Olin or by others.

Contents

Overview

What is Chlorine

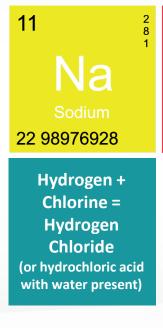
Handling Considerations

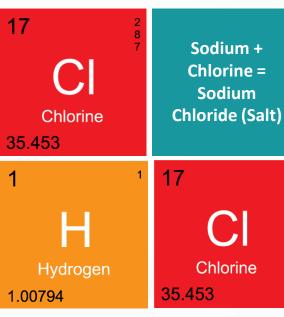
Systems Design

Personal Safety

Emergency Preparedness

Leak Response


Transportation


References

Questions

Sodium +

Chlorine = Sodium

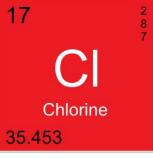
Chlorine

Chlorine is essential to health and society

- 40% of industries use chlorine directly
- Water disinfection
- Water delivery (plastic containers and piping)
- Food production and transportation
 - Insecticide & herbicide manufacture
 - Refrigerant component
- Pharmaceutical production
- Polyurethane foam manufacture
- Paint component

PURIFIED SALT WATER (BRINE) + ELECTRICITY

Cl₂, H₂ + WEAK ALKALI


1 TON OF CHLORINE

PRODUCES

~1.1 TONS
OF NaOH
(~1.6 TONS OF KOH)

Physical Properties of Chlorine

- At atmospheric temperature and pressure it exists as gas
- It is normally compressed and cooled to a liquid for shipping
- Pungent odor, like bleach but much stronger

Liquid

- Amber in color
- About 1.5 times as heavy as water

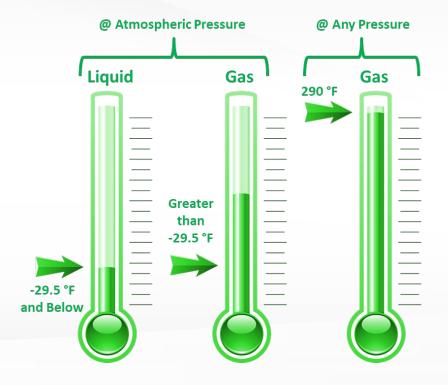
Gas

- Greenish-yellow color
- About 2.5 times as heavy as air
- Gathers in low, confined spaces

Volume of Liquid Chlorine

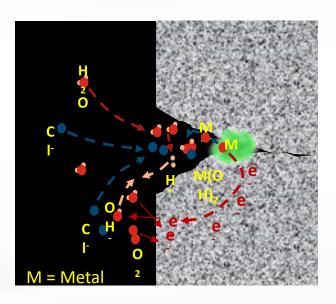
1 volume gas = 1/460 volume liquid

1 volume liquid = 460 volume gas


460 volume gas = 1 volume liquid

Chlorine Atmospheric Pressure

- Chlorine's boiling point = -29.5 °F (-34 °C)
- Chlorine is liquid below boiling point
- Chlorine is gas above boiling point


NOTE: Chlorine is always a gas above 290 °F (143 °C)

Chemical Properties of Chlorine

- Corrosive with moisture
- Reactive with organic materials and most metals
- Strong oxidizer
- Can support combustion (under specific conditions)

Chlorine readily combines with most substances. However, reacts violently with:

- Petroleum products
- Solvents
- Hydrogen compounds
- Some organic materials

Violent reactions may lead to potentially dangerous consequences.

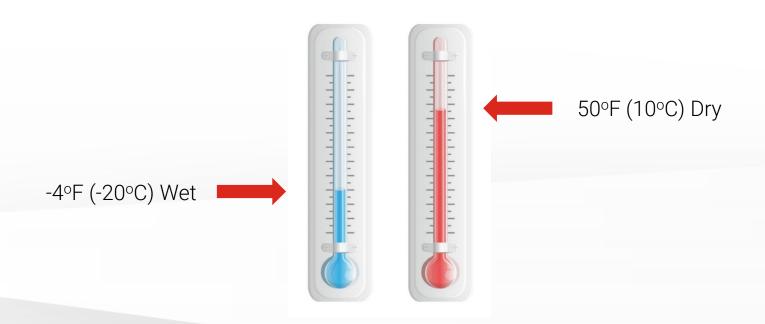
Dry chlorine

- Non-corrosive to most metals, including carbon steel (black iron)
- Incompatible metals and chlorine may result in fires

DO NOT USE:

- Titanium
- Aluminum
- Tin

Wet chlorine


- When water is not dissolved in the chlorine
- Water exists as a liquid
- Highly corrosive

Temperature Effect on Moisture in Chlorine

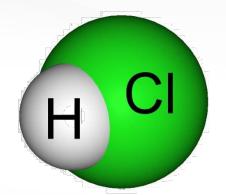
Liquid chlorine at 30 ppm water can be considered wet or dry, dependent on temperature

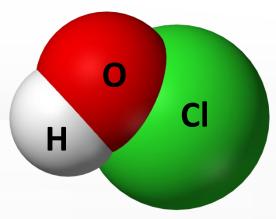
Wet chlorine handling

Wet chlorine produces corrosive acids

- Hydrochloric acid
- Hypochlorous acid

Handle with appropriate materials:




- Titanium
- Fully halogenated fluorocarbons (TFE, Kynar)
- FRP (Fiber Reinforced Plastic)

Materials NOT to use

- Carbon Steel
- Monel and Stainless Steel

Handling Chlorine Equipment Safely

- Keep piping, hoses and coupling dry and clean
- Cap and seal ALL unused piping

Organic oils and greases

- Chlorine reacts violently with oils, greases, and petroleum products
- Use non-reactive lubricants on chlorine equipment
- Acceptable Oils, Greases, Sealants and Lubricants
 - Krytox[®]
 - Fluorolube®
- See Chlorine Institute Pamphlet 164 for other acceptable lubricants

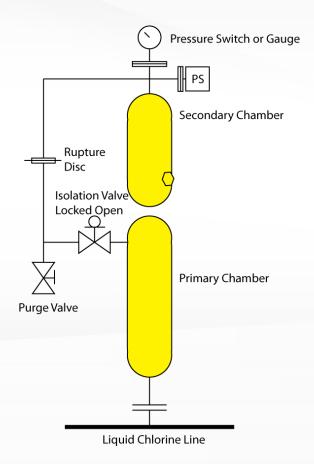
Specific conditions for chlorine combustion

- Chlorine is not flammable but will support combustion under certain conditions.
- Many materials that burn in oxygen (air) atmosphere will also burn in chlorine atmosphere.
- Chlorine combustion can occur when:
 - Steel is exposed to temperatures as low as 300 F (149 C)
 - In presence of finely divided metals such as powders, shavings, etc.

Steel Wool in chlorine

Precautions with chlorine equipment

- Keep away from sources of heat or fire
- Evacuate chlorine from component
- Hot work permitting required for use of welding/cutting torches, etc.



Causes of rupture

- Liquid chlorine expands as temperature increases
- Pressure build-up due to the thermal expansion of liquid chlorine in a section of piping between two isolation points
- A 5° F temperature rise in a liquid full line can increase pressure >500 psig

Runaway reactions can occur due to:

- Improper control of chlorine flows
- Backflow of process reactants into chlorine system
 - Moisture/Liquids from process

Pipe Stabbers

- Stabbers constructed of appropriately rated materials
- Shall be installed so that access to connectors are free of obstructions
- Shall be inspected prior to each use to ensure threads are adequate
- Shall have a defined replacement plan

Threads on a new connector passing the thread inspection

Threads of a worn connector failing the thread inspection

Chlorine Hoses

- Shall be constructed with appropriate materials of construction for use.
- Shall be installed so that hoses are not kinked / stressed when connected or stored after use.
- Shall be inspected prior to each use to ensure no signs of wear or deterioration exists
- Shall be replaced at least every 24 months

Hose / Stabber Connectors

Two or Four-bolt flanged connector

Ammonia 'knock' or 'hammer' union

Hil-Tap half-turn connector

HiLoSeal Coupling

Valves

- Shall be constructed with appropriate materials of construction for Chlorine use.
- Shall be installed so vents within cavities vent upstream when closed.
- Shall be carefully chosen based on service to be used; isolation vs continued cycling

• Shall have a defined replacement schedule

Rail Controls

- Movement Prevention
- Unauthorized tank car movements still occur
- Positive control deterrents are required

Auto Closures

- Shall be carefully chosen based on service to be used – direct mount / inline
- Shall have a defined maintenance schedule to include and meet manufacturers guidance (auto closures)
- Inline units should be bench tested to ensure actuated unit, as well as valve work/seal properly

Pressure Transmitters

- Shall be carefully chosen based on service to be used
- Shall have a defined maintenance schedule to ensure units work accurately

Dew Point

- Shall have means to continuous monitor
- Shall have a means to validate accuracy of single installed unit.
- Shall have a defined replacement/calibration schedule
- Shall have a minimum dew point of -40 deg F

Detection Systems

- Shall have means to continuous monitor & detect close to source
 - Connection / end use
- Shall be set to meet permissible exposure limit set by OSHA 1PPM
- Shall have a defined calibration schedule
- Shall operate to notify in the event leak occurs/is present.

Acute Chlorine Exposure & Clinical Effects:

0.2 – 0.4 ppm Odor detection threshold

1 – 3 ppm Mild mucous membrane irritation,

tolerated up to 1 hour

5 – 15 ppm Moderate irritation of the respiratory tract

25 – 60 ppm Visibility threshold (dependent on humidity)

30 ppm Immediate chest pain, vomiting,

dyspnea & cough

40 – 60 ppm Toxic pneumonitis & pulmonary edema

430 ppm Lethal over 30 minutes

1000 ppm Fatal within a few minutes

One Liter Liquid Chlorine => 460 Liters Chlorine Gas:

- In a medium size auditorium 16 ft X 35 ft X 65 ft:
 - One liter liquid Cl₂ is enough to fill room with 430 ppm
 - Two liters liquid Cl₂ is enough to fill room with 1000 ppm
 - Few deep breath's, can't exit room...
- In a typical room 8 ft X 10 ft X 12 ft:
 - It takes only 25 mL of liquid Cl₂ to get 430 ppm
 - It takes only 60 mL of liquid Cl₂ to get 1000 ppm
- Do not mix Bleach and Vinegar to clean bathroom tiles
 - Chlorine Gas !!!

Acute chlorine gas exposure

- What is the odor threshold for chlorine?
 - As low as 0.25 ppm, varies from person to person
- Exposure to respiratory system is primary concern, followed by eye exposure
- Impact of exposure effects dependent on both chlorine concentration and length of exposure time
- Dosage = chlorine concentration X length of exposure time

Reference: Cl₂ Chlorine Basics

Acute chlorine gas exposurewhat are the hazards of chlorine?

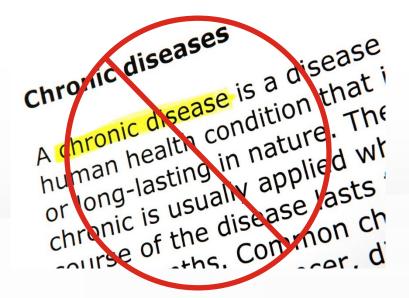
- Toxic gas: respiratory tract and eye irritant
- Corrosive: chemical burns
- Strong oxidizer: fire hazard & heat-related burns
- Liquid is very cold: frostbite

Reference: Cl₂ Chlorine Basics

Following acute exposure

- Delayed Symptoms
 - Up to 4 hours
- Normally complete recovery
- Some decreased lung function may occur

Reference: Cl₂ Chlorine Basics



PPM	EXPOSURE CONTROL
0.5 PPM	ACGIH 8 hr. Time Weighted Average (TWA)
1 PPM	ACGIH Short Term Exposure Limit (STEL)
1 PPM	OSHA Permissible Exposure Limit (PEL) Ceiling Limit (CEIL)
10 PPM	NIOSH Immediately Dangerous to Life and Health (IDLH)

Chronic (long term exposure)

• No evidence of work-related health dangers

Treatment for inhalation

- Move person to fresh air
- If difficult breathing, give oxygen
- If unconscious, perform CPR
- Remove contaminated clothing
- Seek advice from medical personnel for further treatment

General Recommendations

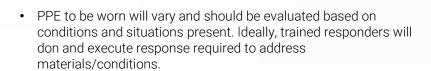
- Hard Hat
- Protective Footwear
- Safety Glasses
- NIOSH/MSHA Escape Respirators

• PPE noted above is for general everyday use in a Chlorine facility.

Line Breaking & Connecting/ Disconnecting

Chlorine:

- Hard Hat
- Footwear Protection
- Neoprene Gloves
- Respiratory Protection
 - Full Face / * SCBA
 - * Based on site specific requirements



Unknown or High Concentrations

Chlorine Gas or Liquid:

- Hard Hat & Footwear Protection
- Chemical Resistant Suit
 - Level A or Enhanced Level B
- Neoprene Gloves
- SCBA

Emergency Situations

- Level A PPE:
- Gas Tight Chemical Suit (One Piece)
- Self-Contained Breathing Apparatus (SCBA)

PPE maintenance is critical:

- Have a scheduled inspection program of all components
- Date & track respirators
- Properly store when not in use (sealed containers)

Planning for emergencies

- Plan ahead
- Have an up-to-date documented written emergency action/response plan
- TRAIN workers frequently for knowledge & fluency
- ASSESS for adequate PPE copies/stock.

Planning for emergencies

- All departments should be involved in emergency planning
- Conduct scheduled inspections of emergency equipment
 - Shut-down systems and alarms
 - Emergency kits
 - PPE
- Test plan by running periodic drills
 - Have varying drills on different scenarios

Active training

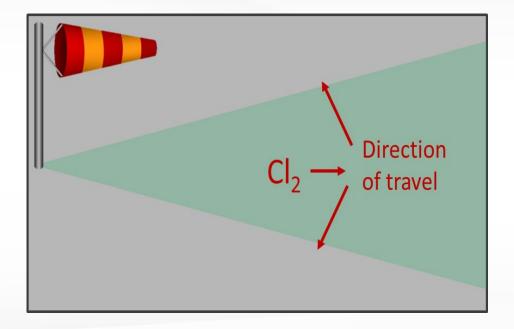
- Involvement with local agencies and response groups
- Periodic testing

General smart practices

- Have a solid and up to date Emergency response plan
- Clearly visible wind direction indicators (multiple)
- Well-known evacuation routes
- Store emergency equipment in well-marked, easy-to-reach locations
 - Out of hot zone areas.

Chlorine leaks/spills

- Typically, first detected by atmospheric monitoring equipment / alarm
- Very strong, pungent odor
- Don escape respirator Evacuate
- Evacuate area immediately along quickest route
- Once safe, notify management



Evacuating Release Area

- Proceed upwind or crosswind (if possible)
- NEVER proceed downwind

Finding and isolating leaks

- Spray ammonia vapor NEVER ammonia liquid to pinpoint
- Turn off valve closest to leak

Leak containment kits

Used by qualified / trained personnel ONLY

- Kit C
 - Rail Cars
 - Barges Special kits available from supplier

Chlorine Emergency Response The Chlorine Institute

UNITED STATES

CHEMTREC
Emergency Response Plan Activation
and Technical Assistance
1-800-424-9300

CANADA

Emergency Response Plan Activation - 1-800-567-745

Technical Assistance (CANUTEC) 1-613-996-6666

Always notify supplier of railcar Immediately.

Chlorine Transportation

Stencils & Markings

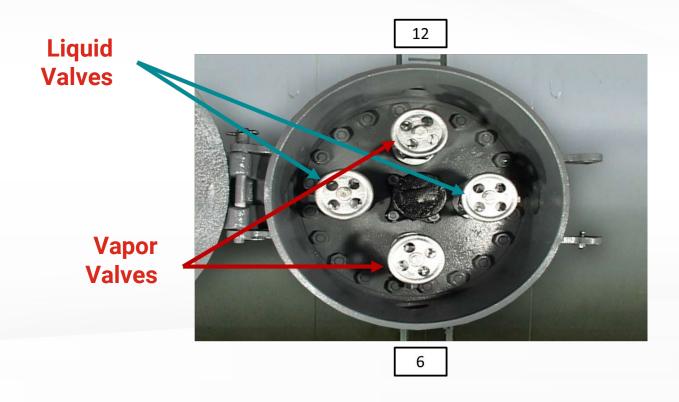
Tank Car Construction

- Carbon Steel Rating of 500 or 600 PSIG
- Insulated
- Metal jacketed car
- Top outlet only
- Double shelf couplers

Stencils & Markings

Loaded tank car

- 80% Liquid Full
- Loaded pressures 60-100 PSIG
 - May increase dependent upon ambient temperatures during transport and or storage
 - Will vary and may increase dependent upon ambient temps and duration exposed to excessively high temps.


Residue tank car

- Residue = 3000 +/- Pounds Mix Vapor & Liquid
- Depressure tank car
 - Always ensure departing pressures are less than 150psig.

Valve Arrangement -Tank Car

Procedure & Detailed Inspection is Critical

- Improper tank car preparation can result in leakage events
- Leakage evidence might not be observed during pre-release inspection
- Inadequate inspection or poor procedural diligence can place others at risk
 - Carrier
 - Community
 - Receiving personnel

Tank Car Information

Returned to Olin with Leak Residues

Possible Causes

- Angle valve left slightly open
- Angle valve plug not tool tight
- Pressure relief device activation
- Leaking pipe stabber connector (during unloading)
- Tattle tale valve on pressure relief device not closed

Tank Car Information

Typical Root Causes & Next Steps

- Improperly-trained staff
- Inadequate procedures
- Lack of robust checklist
- Lack of pre-departure leak check
 - Remember, you are the shipper of record!

Review your Process Safety Management Program for:

- Adequate detail procedures & checklists
- Adequate knowledge
- Adequacy of testing program
 - Re-train personnel either procedures are too generic or personnel don't understand the risks & consequences

For Further Information

OLIN'S TECHNICAL SERVICES

Olin Chlor Alkali Products and Vinyls 490 Stuart Road, NE Cleveland, TN 37312 Tel: (423) 336-4850 / Fax: (423) 336-4830

THE CHLORINE INSTITUTE

1300 Wilson Boulevard, Suite 525 Arlington, VA 22209 Tel: (703) 894-4140 / Fax:(703) 894-4130

http://www.chlorineinstitute.org

References

Useful References

Pamphlet № 1 – Chlorine Basics	Pamphlet № 5 – Bulk Storage of Chlorine
Pamphlet № 6 – Piping Systems for Chlorine	Pamphlet № 57 – Emergency Shut off Systems
Pamphlet № 60 – Chlorine Pipelines	Pamphlet № 65 – Personal Protective Equipment
Pamphlet № 66 – Handling Chlorine Tank Cars	Pamphlet № 72 – Atmospheric Monitoring
Pamphlet № 89 – Chlorine Scrubbing Systems	Pamphlet № 164 – Reactivity and Compatibility of Chlorine and NaOH with various materials.

These publications are provided through The Chlorine Institute.

To obtain any C.I. publication, please call (703)894-4140 or visit www.chlorineinstitute.org

Web Sites - Key Resources

- Olin Chlor Alkali Products and Vinyls
 http://www.olinchloralkali.com
- The Chlorine Institute
 http://www.chlorineinstitute.org

