Sodium Hypochlorite

Properties & Hazards Information

Presentation Overview

General Information

- Physical & Chemical Properties
- Health Hazards

General Information

Sodium Hypochlorite

Common Uses

- Disinfection/sanitizing
 - Drinking water and wastewater
 - Cooling towers
 - Swimming pool treatment
 - Restaurants, hospitals, and food processing equipment
- Elimination/control
 - Quagga and zebra mussels
 - Mold, fungus, and algae

- Bleaching
 - Laundry
 - Pulp and paper

NOTE: Product must be a registered pesticide for disinfection/kill claim applications.

Sodium Hypochlorite Basics

Additional Information

Manufacturing Process

Sodium Hypochlorite (NaOCI) is a solution made from reacting Chlorine with a diluted Sodium Hydroxide (caustic) solution.

Properties Physical & Chemical

General Information

Physical Properties

- Yellow-green to pale green liquid.
 - Contamination can tint solutions.
- "Chlorine" type odor.
 - Generally thought to be hypochlorous acid.
- Soluble in water.
- Stable
- Similar to water (i.e. color, smell, density, physical attributes, etc.) in lower concentrations.

Specific Gravity

Vapor Pressure

ReactivityDecompositionStability• Oxidizer/Highly
Reactive• Chemistry
• Concentration• Metals
• Temperature
• Alkalinity/pH Effect

Chemical Properties

Oxidizer/Highly Reactive

- Sodium Hypochlorite (NaOCl) is not compatible with:
 - Oxidizers, acid, reducing agents.
- Organic compounds/materials:
 - Oils, greases, fuels, solids.
 - Rags, wood fibers, paper.
- Nitrogen-containing compounds:
 - May generate chlorinated nitrogen compounds.

Oxidizer/Highly Reactive

- Sodium Hypochlorite (NaOCl) is not compatible with:
 - Solid or dissolved metals such as copper, nickel, or cobalt.
 - Most metals and their alloys, act as catalyst for the decomposition.
 - Iron solids if present as iron oxide.

Stability

- All hypochlorite solutions decompose over time.
- Dissolved metals will catalyze the decomposition of NaOCI.
 - Common metals: Nickel, Copper.
 - Iron (when present as an oxide) increases the decomposition rate of NaOCI.
- Decomposition of NaOCI solutions caused by trace metals can produce significant quantities of oxygen gas.

Stability

- Sodium hypochlorite is an oxidizer and is highly reactive.
- Contact with any acid or acidic compound will liberate chlorine gas.

Decomposition

- Factors affecting decomposition/stability rates:
 - Temperature
 - Bleach concentration
 - Metals contamination
 - U.V. light exposure
 - Alkalinity/pH
 - Ionic concentration
 - Also called the salt factor.

Stability - Temperature Effect

The decomposition rate of NaOCI solutions increases by a factor of 2 to 4 for every 18° F rise in solution temperature.

Alkalinity/pH effect:

- Solutions typically require at least 0.1 wt.% alkalinity (pH >11) as free NaOH to be stable.
- Caustic concentrations greater than 0.2 wt.% do not measurably increase the product stability.
- Caustic concentrations of about 5% or greater can decrease the product stability.

Decomposition chemistry

- In a Basic Solution (pH > 7) usually "slow" decomposition:
 - Salt and Sodium Chlorate are formed as dissolved salts.
 - 3 NaOCI
 2 NaCI + NaClO₃
 - Oxygen is formed as a gas and Salt is formed as a dissolved salt (normally, the minor reaction).
 - 2 NaOCI _____ O₂+ 2 NaCl
 - Certain trace metals greatly accelerate this decomposition.

Decomposition chemistry

- All hypochlorite solutions decompose over time:
 - In an acid solution (pH < 7) much faster decomposition.
 - O₂ and Cl₂ are formed as gases (can be a significant quantity).
 - NaClO₃ is formed as a dissolved salt.
- Higher temperatures increase all decomposition reactions.

Physical Properties Video

General Information

- **Sodium Hypochlorite** (NaOCl) is an aggressive corrosive chemical and will attack:
 - Eyes
 - Skin
 - By inhalation
 - By ingestion

Eye contact

- Sodium Hypochlorite (NaOCl) can irritate and burn the eyes.
- Very corrosive, may cause corneal scarring and clouding.
- Risk of blindness.

Recommended treatment for eye exposure

- Wash hands before touching face or eyes.
- Flush with running water for at least 15 minutes, preferably until seen by a medical professional.
- Hold eyelids apart to ensure rinsing of the entire eye surface and lids.
- DO NOT attempt to neutralize with chemical agents.
- Seek advice for treatment immediately.

Skin contact

- Sodium Hypochlorite (NaOCl) is corrosive and can severely irritate the skin or cause burning pain, inflammation, and blisters.
- Skin damage may not be immediately apparent and may continue to develop over time.

Recommended treatment for skin exposure

- Flush with running water for at least 15 minutes.
- Remove contaminated clothing.
- DO NOT attempt to neutralize with chemical agents.
- Seek advice for treatment immediately.

Inhalation

- Sodium Hypochlorite (NaOCl) can cause severe irritation of the nose, throat, and respiratory tract.
- Can cause headache and dizziness.
- Can irritate the lungs causing coughing, shortness of breath, and pulmonary edema.

Recommended treatment for inhalation

- Remove victim from area.
- If breathing is difficult, oxygen may be beneficial.
- If breathing has stopped, administer artificial respiration.
- Seek advice for treatment immediately.

Ingestion

- Sodium Hypochlorite (NaOCl) is corrosive and can cause chemical burns in the mouth, throat, and digestive tract.
- Risk of perforation of the esophagus and the stomach lining.
- Can cause nausea, vomiting, and diarrhea.
- Coma and death are possible.

Recommended treatment for ingestion

- DO NOT INDUCE VOMITING.
- Rinse mouth.
- Give large amounts of water.
- If vomiting occurs spontaneously, keep airway clear.
- If person is unconscious, do not administer anything by mouth.
- Seek advice for treatment immediately.

Questions?

Sodium Hypochlorite

